Answer:
The sample standard deviation is 15.3.
Step-by-step explanation:
Given data items,
84, 85, 83, 63, 61, 100, 98,
Number of data items, N = 7,
Let x represents the data item,
Mean of the data points,
[tex]\bar{x}=\frac{84+85+83+63+61+100+98}{7}[/tex]
[tex]=82[/tex]
Hence, sample standard deviation would be,
[tex]\sigma= \sqrt{\frac{1}{N-1}\sum_{i=1}^{N} (x_i-\bar{x})^2}[/tex]
[tex]=\sqrt{\frac{1}{6}\sum_{i=1}^{7} (x_i-82)^2}[/tex]
[tex]=\sqrt{\frac{1}{6}\times 1396}[/tex]
[tex]=\sqrt{232.666666667}[/tex]
[tex]=15.2534149182[/tex]
[tex]\approx 15.3[/tex]