Respuesta :

Answer: First Option

[tex]\frac{x(x-4)(x-1)}{2(x+4)}[/tex]

Step-by-step explanation:

We have the following expression

[tex]\frac{x^2-16}{2x+8}*\frac{x^3-2x^2+x}{x^2+3x-4}[/tex]

First factorize the denominators:

[tex]\frac{x^2-16}{2(x+4)}*\frac{x^3-2x^2+x}{(x+4)(x-1)}[/tex]

Now we factor the numerators

[tex]\frac{(x-4)(x+4)}{2(x+4)}*\frac{x(x^2-2x+1)}{(x+4)(x-1)}[/tex]

[tex]\frac{(x-4)(x+4)}{2(x+4)}*\frac{x(x-1)^2}{(x+4)(x-1)}[/tex]

now we simplify the expression

[tex]\frac{(x-4)}{2}*\frac{x(x-1)}{(x+4)}[/tex]

[tex]\frac{x(x-4)(x-1)}{2(x+4)}[/tex]

The answer  is the first option

Answer:

A on Edge

Step-by-step explanation:

Good Luck!