Respuesta :

Answer:

[tex]y=19.7*10^{3}[/tex]

Step-by-step explanation:

step 1

Find the slope

we know that

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

we have

[tex](-200,-4.03*10^{4}), (50,9.7*10^{3})[/tex]

convert to

[tex](-200,-40.3*10^{3}), (50,9.7*10^{3})[/tex]

substitute in the formula

[tex]m=\frac{9.7*10^{3}+40.3*10^{3}}{50+200}[/tex]

[tex]m=\frac{50*10^{3}}{250}[/tex]

[tex]m=200[/tex]

step 2

Find the equation of the line into point slope form

[tex]y-y1=m(x-x1)[/tex]

we have

[tex](x1,y1)=(50,9.7*10^{3})[/tex]

[tex]m=200[/tex]

substitute

[tex]y-9.7*10^{3}=200(x-50)[/tex] ----> equation of the line into point slope form

step 3

Find the value of y when x=100

substitute in the equation the value of x

[tex]y-9.7*10^{3}=200(100-50)[/tex]

[tex]y=200(50)+9.7*10^{3}[/tex]

[tex]y=19,700[/tex]

[tex]y=19.7*10^{3}[/tex]