Respuesta :

Answer:

x=1 if I understood correctly.

Step-by-step explanation:

[tex] \sqrt{x} + 5 + x - 3 = 4[/tex]

[tex] \sqrt{x} + 2 + x = 4[/tex]

[tex] \sqrt{x} + x = 2[/tex]

At this point if you try all the integers, you will find that only 1 is the solution to this equation, because:

[tex] \sqrt{1} + 1 = 2[/tex]

[tex]1 + 1 = 2[/tex]

[tex]2 = 2[/tex]

Hope I helped!

For this case we must solve the following equation:

[tex]\sqrt {x + 5} -3 = 4[/tex]

We add 3 to both sides of the equation:

[tex]\sqrt {x + 5} = 4 + 3\\\sqrt {x + 5} = 7[/tex]

We raise the square to eliminate the root:

[tex]x + 5 = 7 ^ 2\\x + 5 = 49[/tex]

We subtract 5 on both sides of the equation:

[tex]x = 49-5\\x = 44[/tex]

Answer:

[tex]x = 44[/tex]