contestada

Use the compound interest formula A = P(1 + r) and the given information to solve for r.
A = $3,000,000, P = $20,000, t = 40

Respuesta :

Step-by-step explanation:

A=P(1+R)

A/P=1+R

(A/P)-1=r

(3000000/20000)-1=r

149=r

[tex]\textbf{Answer:}[/tex]

[tex]r\approx 0.13345[/tex]

[tex]\textbf{Step-by-step explanation:}[/tex]

[tex]\text{Your formula is missing something: t}[/tex]

[tex]\text{It should read }A=P(1+r)^t[/tex] [tex]\text{Where A is the final amount, P is the principal, r is rate in decimal, and t is time in years}[/tex]

[tex]\text{Given that A=3000000, P=20000, and t=40, we can subsitute and solve}[/tex]

[tex]A=P(1+r)^t[/tex]

[tex]\text{subsitute}[/tex]

[tex]3000000=20000(1+r)^{40}[/tex][tex]\text{ now solve for r}[/tex]

[tex]\text{Divide both sides by 20000}[/tex]

[tex]150=(1+r)^{40}[/tex]

[tex]\text{Take the 40th root of both sides }(\sqrt[40]{})[/tex]

[tex]\sqrt[40]{150}=1+r[/tex]

[tex]\text{subtract 1 from both sides}[/tex]

[tex]\sqrt[40]{150}-1=r[/tex] [tex]\text{ or in approximate form, }[/tex][/tex]r\approx 0.13345[/tex]