Respuesta :

Answer:

-1/5x +1/2

ghiybifvcodtgy78

Answer:

b.[tex]y=-\frac{1}{5}x+\frac{1}{2}[/tex]

Step-by-step explanation:

We have to find the linear which has same slope  as the slope represented by the table.

Slope formula :m=[tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

By using the formula and substitute [tex]y_1=\frac{1}{5},y_2=\frac{7}{50},x_1=-\frac{1}{2},x_2=-\frac{1}{5}[/tex]

Slope=[tex]\frac{\frac{7}{50}-\frac{1}{5}}{-\frac{1}{5}+\frac{1}{2}}[/tex]

Slope=[tex]\frac{-\frac{3}{50}}{\frac{3}{10}}[/tex]

Slope=[tex]-\frac{3}{50}\times \frac{10}{3}[/tex]

Slope=[tex]-\frac{1}{5}[/tex]

a.[tex]y=-\frac{1}{2}x+\frac{1}{10}[/tex]

Compare with

[tex]y=mx+b[/tex]

we get m=[tex]-\frac{1}{2}[/tex]

Slope=[tex]-\frac{1}{2}[/tex]

Hence, option A is false.

b.[tex]y=-\frac{1}{5}x+\frac{1}{2}[/tex]

Slope of given function=[tex]-\frac{1}{5}[/tex]

It is true.

c.[tex]y=\frac{1}{5}x-\frac{1}{2}[/tex]

Slope of given function=[tex]\frac{1}{5}[/tex]

Hence, option is false.

d.[tex]y=\frac{1}{2}x-\frac{1}{10}[/tex]

Slope of given function=[tex]\frac{1}{2}[/tex]

Hence, option is false.