Use technology to create an appropriate model of the data.
(-2,-9), (0,-3), (1,0), (3,6), (5,12)
f(x) = – 3x - 3
f(x) = 3x - 3
f(x) = - 3x + 3
f(x) = 3x + 3

Respuesta :

Answer:

f(x) = 3x - 3

Step-by-step explanation:

Plug into TI-83/84 calculator.

Hit STAT

Hit EDIT

X-Values go in for L1

Y-Values go in for L2

Hit STAT

Scroll over to CALC

Hit #4 for LinReg (Finds line of best fit)

Enter all the way through

A is your slope

B is your y-intercept

Answer:

[tex]f(x)=3x-3[/tex]  

Step-by-step explanation:

Data : (-2,-9), (0,-3), (1,0), (3,6), (5,12)

Using technology , Plot the points on the calculator .

(Refer the attached figure)

Or

First calculate the slope of given points

[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]   ---A

[tex](x_1,y_1)=(-2,-9)[/tex]

[tex](x_2,y_2)=(0,-3)[/tex]

Substitute values in A

[tex]m = \frac{-3-(-9)}{0-(-2)}[/tex]

[tex]m = \frac{-3+9}{2}[/tex]

[tex]m = \frac{6}{2}[/tex]

[tex]m = 3[/tex]

[tex](x_1,y_1)=(1,0)[/tex]

[tex](x_2,y_2)=(3,6)[/tex]

Substitute values in A

[tex]m = \frac{6-0}{3-1}[/tex]

[tex]m = \frac{6}{2}[/tex]

[tex]m = 3[/tex]

Since the slopes are same .

So, the the given data is a linear function.

Now to obtain the equation for data we will use two point slope form.

[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]   ---B

[tex](x_1,y_1)=(-2,-9)[/tex]

[tex](x_2,y_2)=(0,-3)[/tex]

Substitute values in B

[tex]y+9= \frac{-3-(-9)}{0-(-2)}(x+2)[/tex]  

[tex]y+9= \frac{6}{2}(x+2)[/tex]  

[tex]y+9=3(x+2)[/tex]  

[tex]y+9=3x+6[/tex]  

[tex]y=3x+6-9[/tex]  

[tex]y=3x-3[/tex]  

So, [tex]f(x)=y=3x-3[/tex]  

Thus Option B is true .

Hence the required equation is  [tex]f(x)=3x-3[/tex]  

Ver imagen wifilethbridge