Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = x2yzi + xy2zj + xyz2k, S is the surface of the box enclosed by the planes x = 0, x = a, y = 0, y = b, z = 0, and z = c, where a, b, and c are positive numbers.

Respuesta :

By the divergence theorem, the integral of [tex]\vec F[/tex] over the surface [tex]S[/tex] is equivalent to the integral of the divergence of [tex]\vec F[/tex] over the interior of [tex]S[/tex] (call it [tex]R[/tex]).

The divergence of [tex]\vec F[/tex] is

[tex]\nabla\cdot\vec F=6xyz[/tex]

so the surface integral is equivalent to

[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\iiint_R(\nabla\cdot\vec F)\,\mathrm dV[/tex]

[tex]=\displaystyle6\int_0^c\int_0^b\int_0^axyz\,\mathrm dx\,\mathrm dy\,\mathrm dz=\boxed{\frac34a^2b^2c^2}[/tex]