Respuesta :

Answer:

x=335

Step-by-step explanation:

The given expression is

[tex]8^{2x+3}+8^{2x+1}-8^{2x}=519*2^{2010}[/tex]

Apply the reverse of the product rule: [tex]a^{m+n}=a^m\times a^n[/tex]

[tex]8^{2x}\times 8^3+8^{2x}\times 8^1-8^{2x}=519*2^{2010}[/tex]

Factor on the left

[tex](8^3+ 8^1-1})8^{2x}=519*2^{2010}[/tex]

Evaluate

[tex](512+ 8-1})8^{2x}=519*2^{2010}[/tex]

Simplify:

[tex]519*8^{2x}=519*2^{2010}[/tex]

Divide through by 519

[tex]8^{2x}=2^{2010}[/tex]

Write the the LHS as a power of 2.

[tex]2^{3*2x}=2^{2010}[/tex]

[tex]2^{6x}=2^{2010}[/tex]

Equate the exponent

[tex]6x=2010[/tex]

Divide by 6

x=335