Answer:
Part A) Option C. obtuse
Part B) Option B. acute
Step-by-step explanation:
we know that
Applying the Pythagoras Theorem
if [tex]c^{2}=a^{2}+b^{2}[/tex] ----> is a right triangle
if [tex]c^{2}>a^{2}+b^{2}[/tex] ----> is an obtuse triangle
if [tex]c^{2}<a^{2}+b^{2}[/tex] ----> is an acute triangle
where
c is the greater side
Part A) A triangle has side lengths 32, 45 and 18. What type of triangle is it?
we have
[tex]c^{2}=45^{2}=2,025[/tex]
[tex]a^{2}+b^{2}=32^{2}+18^{2}=1,348[/tex]
therefore
[tex]c^{2}>a^{2}+b^{2}[/tex]
Is an obtuse triangle
Part B) A triangle has side lengths 44, 36 and 30. What type of triangle is it?
we have
[tex]c^{2}=44^{2}=1,936[/tex]
[tex]a^{2}+b^{2}=36^{2}+30^{2}=2,196[/tex]
therefore
[tex]c^{2}< a^{2}+b^{2}[/tex]
Is an acute triangle