Find an equation equivalent to r=5/1+cos0 in rectangular coordinates

A. x^2=25-10y
B. X^2=10y-25
C.y^2=10x-25
C. Y^2= 25-10x

Respuesta :

[tex]r=\dfrac5{1+\cos\theta}\implies r(1+\cos\theta)=5\implies r+r\cos\theta=5[/tex]

In converting between polar and rectangular coordinates, we take

[tex]x^2+y^2=r^2\implies r=\sqrt{x^2+y^2}[/tex]

[tex]x=r\cos\theta[/tex]

so that the equation becomes

[tex]\sqrt{x^2+y^2}+x=5[/tex]

which we can rewrite as

[tex]\sqrt{x^2+y^2}=5-x[/tex]

[tex]x^2+y^2=(5-x)^2[/tex]

[tex]x^2+y^2=25-10x+x^2[/tex]

[tex]\implies\boxed{y^2=25-10x}[/tex]

so the answer is C.