Answer:
Part 1) The length of each side of the square is about 4.47 units
Part 2) The length of its diagonal is about 6.32 units
Step-by-step explanation:
Part 1)
Find the length of each side of the square
In the right triangle TPQ
Applying the Pythagoras Theorem
[tex]TQ^{2}=PQ^{2}-TP^{2}[/tex]
substitute the given values
[tex]TQ^{2}=6^{2}-4^{2}[/tex]
[tex]TQ^{2}=36-16[/tex]
[tex]TQ^{2}=20[/tex]
[tex]TQ=2\sqrt{5}\ units[/tex] -----> exact value
[tex]TQ=4.47\ units[/tex] -----> approximate value
Part 2)
Find the length of the diagonal of the square
Applying the Pythagoras Theorem
[tex]TR^{2}=TQ^{2}+QR^{2}[/tex]
we have
[tex]TQ=QR[/tex]
[tex]TQ=2\sqrt{5}\ units[/tex]
substitute
[tex]TR^{2}=(2\sqrt{5})^{2}+(2\sqrt{5})^{2}[/tex]
[tex]TR^{2}=40[/tex]
[tex]TR=2\sqrt{10}\ units[/tex] -----> exact value
[tex]TR=6.32\ units[/tex] ----> approximate value