Rewrite the expression as a sum of terms, where each term is in the form k\cdot a^nk⋅a
n
k, dot, a, start superscript, n, end superscript.
\sqrt a\left(2a^2-\dfrac4a\right)=
a
​ (2a
2

a
4
​ )=

Respuesta :

Answer:

  [tex]2a^{\frac{5}{2}}-4a^{-\frac{1}{2}}[/tex]

Step-by-step explanation:

It looks like you want to expand the expression ...

  [tex]\sqrt{a}\left(2a^2 -\dfrac{4}{a}\right)[/tex]

Use the distributive property and rules of exponents.

  [tex]=2a^{(\frac{1}{2}+2)}-4a^{(\frac{1}{2}-1)}\\\\=\boxed{2a^{\frac{5}{2}}-4a^{-\frac{1}{2}}}[/tex]

_____

The relevant rules of exponents are ...

  √a = a^(1/2)

  1/a = a^-1

  (a^b)(a^c) = a^(b+c)

Answer:

 (a^b)(a^c) = a^(b+c)

Step-by-step explanation: