If MNOP is a rectangle, and m

Answer:
(B) 60
Step-by-step explanation:
From the figure, it is given that MNOP is a rectangle and ∠MON=60°.
Now, Since from the properties of rectangle, the diagonals are congruent and bisect each other, therefore ∠PNO=60°.
Now, using the angle sum property in ΔNDO, we have
[tex]{\angle}DNO+{\angle}DON+{\angle}NDO=180^{\circ}[/tex]
Substituting the given values, we get
⇒[tex]60^{\circ}+60^{\circ}+{\angle}NDO=180^{\circ}[/tex]
⇒[tex]120^{\circ}+{\angle}NDO=180^{\circ}[/tex]
⇒[tex]{\angle}NDO=180-120[/tex]
⇒[tex]{\angle}NDO=60^{\circ}[/tex]
Now, since [tex]x={\angle}NDO=60^{\circ}[/tex]( Vertically opposite angle)
Thus, the value of x is 60°
Hence, option B is correct.