Respuesta :

Answer:

4

Step-by-step explanation:

To solve this we are using the distance formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

where

[tex](x_1,y_1)[/tex] are the coordinates of the first point

[tex](x_2,y_2)[/tex] are the coordinates of the second point

We know that the first point is (2, –6), so [tex]x_1=-3[/tex] and [tex]y_1=0[/tex]. The second point is (0, √7), so [tex]x_2=0[/tex] and [tex]y_2=\sqrt{7}[/tex]. Let's replace the values in our formula to find the distance between the points:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]d=\sqrt{(0--3)^2+(\sqrt{7}-0)^2 }[/tex]

[tex]d=\sqrt{(3)^2+(\sqrt{7})^2 }[/tex]

[tex]d=\sqrt{9+7}[/tex]

[tex]d=\sqrt{16}[/tex]

[tex]d=4[/tex]

We can conclude that the distance between (-3, 0) and (0, √7)  is 4.

Answer:

The correct answer is 4

Step-by-step explanation:

Distance formula

Let (x₁, y₁) and (x₂, y₂) be the two points, the distance between two points is given by,

Distance = √[(x₂ - x₁)² + (y₂ - y₁)²]

It is given two points (-3, 0) and (0, √7)

To find the distance

Distance =  √[(x₂ - x₁)² + (y₂ - y₁)²]

=  √[(0 - - 3)² + (√7 - 0)²]

  = √[(0 + 3)² + (√7)²]

=√[(3)² + (√7)²]

 

  = √(9 + 7) = √16 = 4

Therefore the correct answer is 4