Respuesta :
Answer:
[tex]\large\boxed{x\in\{-5,\ -1,\ 0,\ 4,\ 5\}}[/tex]
Step-by-step explanation:
The zeros of g(x):
[tex]g(x)=x(x^2-25)(x^2-3x-4)\to g(x)=0\\\\x(x^2-25)(x^2-3x-4)=0\iff x=0\ \vee\ x^2-25=0\ \vee\ x^2-3x-4\\\\x^2-25=0\qquad\text{add 25 to both sides}\\x^2=25\to x=\pm\sqrt{25}\\x=-5\ \vee\ x=5\\\\x^2-3x-4=0\\x^2+x-4x-4=0\\x(x+1)-4(x+1)=0\\(x+1)(x-4)=0\iff x+1=0\ \vee\ x-4=0\\x=-1\ \vee\ x=4[/tex]
The zeros of the function are x = 0, x = 5, x = -5, x = 4 and x = -1
The equation of the function is given as:
[tex]g(x)=x(x^2-25)(x^2-3x-4)[/tex]
Factorize the equation
[tex]g(x)=x(x-5)(x+ 5)(x^2-3x-4)[/tex]
Expand the equation
[tex]g(x)=x(x-5)(x+ 5)(x^2+x-4x-4)[/tex]
Factorize
[tex]g(x)=x(x-5)(x+ 5)(x(x+1)-4(x+1))[/tex]
Factor out x + 1
[tex]g(x)=x(x-5)(x+ 5)(x-4)(x+1)[/tex]
Equate to 0
[tex]x(x-5)(x+ 5)(x-4)(x+1) = 0[/tex]
Solve for x
x = 0, x = 5, x = -5, x = 4 and x = -1
Hence, the zeros of the function are x = 0, x = 5, x = -5, x = 4 and x = -1
Read more about zeros of the functions at:
https://brainly.com/question/20896994