Use the dot product to determine which of the following vector pairs are orthogonal.

(a) v1=(-5, 5) and v2=(1, 1)

(b) v1=(154, -169.4) and v2=(88, 64)

Respuesta :

ANSWER

a) Orthogonal

b) Not orthogonal.

EXPLANATION

The given vectors are:

a)

[tex]v1 = \: < \: - 5,5 \: > [/tex]

and

[tex]v2= \: < \: 1,1 \: > [/tex]

If the dot product of two vectors is zero, then the two vectors are orthogonal.

[tex]v1 \bullet \: v2= - 5 \times 1 + 5 \times 1 [/tex]

[tex]v1 \bullet \: v2= - 5 \times 1 + 5 \times 1 = - 5 + 5[/tex]

[tex]v1 \bullet \: v2= 0[/tex]

These two vectors are orthogonal.

b)

The second pair of vectors are:

[tex]v1 = \: < \: 154, -169.4 \: > [/tex]

and

[tex]v2 = \: < \: 88,64 \: > [/tex]

[tex]v1 \bullet \: v2= 154\times 88 + - 169.4\times 64[/tex]

[tex]v1 \bullet \: v2= 13552 - 10841.6[/tex]

[tex]v1 \bullet \: v2= 2712.4[/tex]

This pair is not orthogonal.