Respuesta :
QUESTION 1
We want to convert [tex](5,\frac{\pi}{4})[/tex] from polar coordinates to rectangular coordinates.
We use the formula;
[tex]x=r\cos \theta[/tex]
[tex]y=r\sin \theta[/tex]
We plug in [tex]r=5[/tex] and [tex]\theta=\frac{\pi}{4}[/tex] to obtain;
[tex]x=5\cos \frac{\pi}{4}=\frac{5\sqrt{2}}{2}[/tex]
[tex]y=5\sin \frac{\pi}{4}=\frac{5\sqrt{2}}{2}[/tex]
The rectangular coordinate is [tex](\frac{5\sqrt{2}}{2},\frac{5\sqrt{2}}{2})[/tex]
QUESTION 2
We want to convert [tex](-2,\frac{\pi}{6})[/tex] from polar coordinates to rectangular coordinates.
We use the formula;
[tex]x=r\cos \theta[/tex]
[tex]y=r\sin \theta[/tex]
We plug in [tex]r=-2[/tex] and [tex]\theta=\frac{\pi}{6}[/tex] to obtain;
[tex]x=-2\cos \frac{\pi}{6}=-1[/tex]
[tex]y=-2\sin \frac{\pi}{6}=-\sqrt{3}[/tex]
The rectangular coordinate is [tex](-1,-\sqrt{3})[/tex]
QUESTION 3
We want to convert [tex](-1,\frac{-2\pi}{3})[/tex] from polar coordinates to rectangular coordinates.
We use the formula;
[tex]x=r\cos \theta[/tex]
[tex]y=r\sin \theta[/tex]
We plug in [tex]r=-1[/tex] and [tex]\theta=\frac{-2\pi}{3}[/tex] to obtain;
[tex]x=-1\cos \frac{-2\pi}{3}=\frac{1}{2}[/tex]
[tex]y=-1\sin \frac{-2\pi}{3}=\frac{\sqrt{3}}{2}[/tex]
The rectangular coordinate is [tex](\frac{1}{2},\frac{\sqrt{3}}{2})[/tex]
QUESTION 4
We want to convert [tex](3,225\degree)[/tex] from polar coordinates to rectangular coordinates.
We use the formula;
[tex]x=r\cos \theta[/tex]
[tex]y=r\sin \theta[/tex]
We plug in [tex]r=3[/tex] and [tex]\theta=225\degree[/tex] to obtain;
[tex]x=3\cos (225\degree)=-3\frac{\sqrt{2}}{2}[/tex]
[tex]y=3\sin(225\degree)=-\frac{3\sqrt{2}}{2}[/tex]
The rectangular coordinate is [tex](-\frac{3\sqrt{2}}{2},-3\frac{\sqrt{2}}{2})[/tex]
QUESTION 5
We want to convert [tex](-3,330\degree)[/tex] from polar coordinates to rectangular coordinates.
We use the formula;
[tex]x=r\cos \theta[/tex]
[tex]y=r\sin \theta[/tex]
We plug in [tex]r=-3[/tex] and [tex]\theta=330\degree[/tex] to obtain;
[tex]x=-3\cos (330\degree)=-\frac{3\sqrt{3}}{2}[/tex]
[tex]y=-3\sin(330\degree)=\frac{3}{2}[/tex]
The rectangular coordinate is [tex](-\frac{3\sqrt{3}}{2},\frac{3}{2})[/tex]