Respuesta :

Answer:

y = [tex]\frac{4}{3} x[/tex] - 8

Step-by-step explanation:

The given line passes through (-4, 4) and (4, -2)

The slope of this line will be given by: Change in y ÷ change in x

Slope = [tex]\frac{4 - -2}{-4 - 4}[/tex] = [tex]-\frac{6}{8}[/tex] = [tex]-\frac{3}{4}[/tex]

The slope of the given line times the slope of the perpendicular line = -1

Let's say the slope of the perpendicular line is p

Then, [tex]-\frac{3}{4}[/tex] × p = -1

p = -1 ÷ [tex]-\frac{3}{4}[/tex] = [tex]\frac{4}{3}[/tex]

The perpendicular line passes through point (6, 0)

Taking another point (x, y) on the perpendicular line;

[tex]\frac{y - 0}{x - 6}[/tex] = [tex]\frac{4}{3}[/tex]

Cross multiplying this gives the equation of the perpendicular line to be:

y = [tex]\frac{4}{3} x[/tex] - 8