Find the volume of this composite solid

Answer:
[tex]889.67\ m^{3}[/tex]
Step-by-step explanation:
we know that
The volume of the composite solid is equal to the volume of the cylinder plus the volume of a cone
The volume of the cylinder is equal to
[tex]V=\pi r^{2}h[/tex]
we have
[tex]r=5\ m[/tex]
[tex]h=10\ m[/tex]
substitute
[tex]V=\pi (5)^{2}(10)=250\pi\ m^{3}[/tex]
The volume of the cone is equal to
[tex]V=(1/3)\pi r^{2}h[/tex]
we have
[tex]r=5\ m[/tex]
[tex]h=4\ m[/tex]
substitute
[tex]V=(1/3)\pi (5)^{2}(4)=(100/3) \pi\ m^{3}[/tex]
The volume of the composite solid is
[tex]250\pi\ m^{3}+(100/3) \pi\ m^{3}=(850/3) \pi\ m^{3}[/tex]
assume
[tex]\pi=3.14[/tex]
[tex](850/3)(3.14)=889.67\ m^{3}[/tex]