Respuesta :

Answer:

[tex]889.67\ m^{3}[/tex]

Step-by-step explanation:

we know that

The volume of the composite solid is equal to the volume of the cylinder plus the volume of a cone

The volume of the cylinder is equal to

[tex]V=\pi r^{2}h[/tex]

we have

[tex]r=5\ m[/tex]

[tex]h=10\ m[/tex]

substitute

[tex]V=\pi (5)^{2}(10)=250\pi\ m^{3}[/tex]

The volume of the cone is equal to

[tex]V=(1/3)\pi r^{2}h[/tex]

we have

[tex]r=5\ m[/tex]

[tex]h=4\ m[/tex]

substitute

[tex]V=(1/3)\pi (5)^{2}(4)=(100/3) \pi\ m^{3}[/tex]

The volume of the composite solid is

[tex]250\pi\ m^{3}+(100/3) \pi\ m^{3}=(850/3) \pi\ m^{3}[/tex]

assume

[tex]\pi=3.14[/tex]

[tex](850/3)(3.14)=889.67\ m^{3}[/tex]