Respuesta :
Supposing you know about the derivative, notice that
[tex]\displaystyle\lim_{h\to0}\frac{\ln(x+h)-\ln x}h=\dfrac{\mathrm d(\ln x)}{\mathrm dx}=\dfrac1x[/tex]
so that when [tex]x=2e[/tex], the limit is equal to [tex]\dfrac1{2e}[/tex] and the answer is A.
[tex]\lim_{h \to 0 } \frac{ ln(x + h) - ln(x) }{h} [/tex]
[tex] = \frac{d( ln(x)) }{dx} [/tex]
[tex] = \frac{1}{x} [/tex]
when x = 2e
[tex] = \frac{1}{2e} [/tex]
So , correct option is (A) 1/2e .
#$# HOPE YOU UNDERSTAND #$#
#$¥ THANK YOU ¥$#
❤ ☺ ☺ ☺ ☺ ☺ ☺ ❤