Respuesta :

Answer:

f(x)

Domain: all real numbers

Range:[tex]y\ge -2[/tex]

[tex]f^{-1}(x)[/tex]

Domain: [tex]y\ge -2[/tex]

Range:all real numbers

Step-by-step explanation:

Given [tex]f(x)=x^2-2[/tex]

The domain of this function, refers to all values of x for which f(x) is defined.

The given function is a quadratic polynomial.

Polynomial functions are defined everywhere, therefore the domain is all real numbers.

The range refers to the values of y, for which  x is defined

Let [tex]y=x^2-2[/tex]

Solve for x;

[tex]x=\pm \sqrt{y+2}[/tex]

This function is defined for [tex]y+2\ge0[/tex]

This implies that; [tex]y\ge-2[/tex]

Inverse Function

The domain of f(x) becomes the range of [tex]f^{-1}(x)[/tex] and the range of  f(x) becomes the domain of [tex]f^{-1}(x)[/tex].

Domain: [tex]y\ge -2[/tex]

Range:all real numbers

Or see it in details

Let [tex]y=x^2-2[/tex]

interchange x and y;

[tex]x=y^2-2[/tex]

[tex]x+2=y^2[/tex]

[tex]\pm \sqrt{x+2}=y[/tex]

[tex]f^{-1}(x)=\pm \sqrt{x+2}[/tex]

Domain: [tex]x\ge-2[/tex]

Range:

Let

[tex]y=\pm \sqrt{x+2}[/tex]

[tex]\implies y^2-2=x[/tex]

x is defined for all y-values.