Respuesta :

Answer:

Translation of h(x) is 2 unit down, 3 unit right and vertical stretch by 2

Step-by-step explanation:

Given function: [tex]h(x)=\dfrac{1}{2}(x+3)^2+2[/tex]

Parent function: [tex]f(x)=x^2[/tex]

It is parabolic function.

[tex]h(x)=\dfrac{1}{2}(x+3)^2+2[/tex]

Shift 2 unit down

[tex]g(x)=\dfrac{1}{2}(x+3)^2+2-2[/tex]

[tex]g(x)=\dfrac{1}{2}(x+3)^2[/tex]

Shift 3 unit right

[tex]g(x)=\dfrac{1}{2}(x+3-3)^2[/tex]

[tex]g(x)=\dfrac{1}{2}x^2[/tex]

Vertical stretch by factor 2

[tex]g(x)=2\cdot dfrac{1}{2}x^2[/tex]

[tex]g(x)=x^2=f(x)[/tex]

So, Translation of h(x) is 2 unit down, 3 unit right and vertical stretch by 2

Ver imagen isyllus