Respuesta :
Answer: [tex]n=0[/tex]
Step-by-step explanation:
You need to remember that:
[tex]a^n=a^m\\n=m[/tex]
By the Power of a power property:
[tex](a^m)^n=a^{mn}[/tex]
By the Negative exponent rule:
[tex]a^{-1}=\frac{1}{a}[/tex]
Therefore, having the expression [tex](\frac{1}{9} )^{2n}=27^{n}[/tex]:
Descompose 27 and 9 into their prime factors:
[tex]27=3*3*3=3^3[/tex]
[tex]9=3*3=3^2[/tex]
Rewrite the expression and simplify. Then:
[tex](3^{-2})^{2n}=(3^3)^n\\3^{-4n}=3^{3n}\\-4n=3n\\-4n-3n=0\\n=0[/tex]
Answer:
n=0
Step-by-step explanation:
Given in the question an equation
[tex]\frac{1}{9}^{2n}=27^{n}[/tex]
we can write
[tex]\frac{1}{9}[/tex]
as
[tex](\frac{1}{3})^{2}[/tex]
further as
[tex]3^{-2}[/tex]
so
[tex]3^{-2(2n)}=3^{3n}[/tex]
[tex]3^{-4n}=3^{3n}[/tex]
Since now the base is same
and we know that
[tex]x^{n}=x^{m}\\n=m[/tex]
-4n = 3n
n cancel out which means n =0