Respuesta :

ANSWER

1

EXPLANATION

We want to simplify:

[tex] {x}^{3} \bullet \: {x}^{ - 4} \bullet \: x[/tex]

Recall that:

[tex] {a}^{m} \times {a}^{n} = {a}^{m + n} [/tex]

We use this property of exponents to get:

[tex] {x}^{3} \bullet \: {x}^{ - 4} \bullet \: x = {x}^{3 + - 4 + 1} [/tex]

[tex]{x}^{3} \bullet \: {x}^{ - 4} \bullet \: x = {x}^{0} [/tex]

Any non-zero number to the exponent of zero is 1.

[tex]{x}^{3} \bullet \: {x}^{ - 4} \bullet \: x = 1[/tex]

Answer: Last option

Step-by-step explanation:

You need to remember the Negative exponent rule:

[tex]a^{-1}=\frac{1}{a}[/tex]

You also need to remember the Product ot poers property and the Quotient of powers property, which are:

[tex]a^m*a^n=a^{(m+n)}\\\\\frac{a^m}{a^n}=a^{(m-n)}[/tex]

And:

[tex]a^0=1[/tex]

Therefore, you can rewrite the expression as following:

[tex]\frac{x^3*x}{x^4}[/tex]

Applying the properties, you can simplify:

[tex]=\frac{x^4}{x^4}\\\\=x^0\\=1[/tex]