Respuesta :
ANSWER
1
EXPLANATION
We want to simplify:
[tex] {x}^{3} \bullet \: {x}^{ - 4} \bullet \: x[/tex]
Recall that:
[tex] {a}^{m} \times {a}^{n} = {a}^{m + n} [/tex]
We use this property of exponents to get:
[tex] {x}^{3} \bullet \: {x}^{ - 4} \bullet \: x = {x}^{3 + - 4 + 1} [/tex]
[tex]{x}^{3} \bullet \: {x}^{ - 4} \bullet \: x = {x}^{0} [/tex]
Any non-zero number to the exponent of zero is 1.
[tex]{x}^{3} \bullet \: {x}^{ - 4} \bullet \: x = 1[/tex]
Answer: Last option
Step-by-step explanation:
You need to remember the Negative exponent rule:
[tex]a^{-1}=\frac{1}{a}[/tex]
You also need to remember the Product ot poers property and the Quotient of powers property, which are:
[tex]a^m*a^n=a^{(m+n)}\\\\\frac{a^m}{a^n}=a^{(m-n)}[/tex]
And:
[tex]a^0=1[/tex]
Therefore, you can rewrite the expression as following:
[tex]\frac{x^3*x}{x^4}[/tex]
Applying the properties, you can simplify:
[tex]=\frac{x^4}{x^4}\\\\=x^0\\=1[/tex]