Respuesta :
Answer: [tex]\sqrt[6]{2}[/tex]
Step-by-step explanation:
You know that the expression is [tex]\frac{\sqrt{2}}{\sqrt[3]{2}}[/tex]
By definition we know that:
[tex]\sqrt[n]{a}=a^{\frac{1}{n}[/tex]
You also need to remember the Quotient of powers property:
[tex]\frac{a^n}{a^m}=a^{(n-m)}[/tex]
Therefore, you can rewrite the expression:
[tex]=\frac{2^{\frac{1}{2}}}{2^{\frac{1}{3}}}[/tex]
Finally, you have to simplify the expression. Therefore, you get:
[tex]=2^{(\frac{1}{2}-\frac{1}{3})}\\=2^{\frac{1}{6}}\\=\sqrt[6]{2}[/tex]
ANSWER
[tex]\frac{ \sqrt{2} }{ \sqrt[3]{2} } = \sqrt[6]{2} [/tex]
EXPLANATION
We want to simplify
[tex] \frac{ \sqrt{2} }{ \sqrt[3]{2} } [/tex]
We rewrite in exponential form to get:
[tex]\frac{ \sqrt{2} }{ \sqrt[3]{2} } = \frac{ {2}^{ \frac{1}{2} } }{{2}^{ \frac{1}{3} } } [/tex]
Recall the quotient rule of exponents:
[tex] \frac{ {a}^{m} }{ {a}^{n} } = {a}^{m - n} [/tex]
We apply this rule to get:
[tex]\frac{ \sqrt{2} }{ \sqrt[3]{2} } = {2}^{ \frac{1}{2} - \frac{1}{3} } [/tex]
Simplify:
[tex] \frac{ \sqrt{2} }{ \sqrt[3]{2} } = {2}^{ \frac{3 - 2}{6} } [/tex]
[tex] \frac{ \sqrt{2} }{ \sqrt[3]{2} } = {2}^{ \frac{1}{6} } [/tex]
[tex] \frac{ \sqrt{2} }{ \sqrt[3]{2} } = \sqrt[6]{2} [/tex]