Respuesta :

Answer:

Table B

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]y/x=k[/tex] or [tex]y=kx[/tex]

Verify table B

For [tex]x=1, y=1/2[/tex] -----> [tex]k=y/x=(1/2)/1=1/2[/tex]

For [tex]x=2, y=1[/tex] -----> [tex]k=y/x=1/2[/tex]

For [tex]x=3, y=3/2[/tex] -----> [tex]k=y/x=(3/2)/3=1/2[/tex]

For [tex]x=4, y=2[/tex] -----> [tex]k=y/x=2/4=1/2[/tex]

The values of k are the same

therefore

The table B shows y as DIRECTLY PROPORTIONAL to x

Verify table D

For [tex]x=1, y=3[/tex] -----> [tex]k=y/x=3/1=3[/tex]

For [tex]x=2, y=5[/tex] -----> [tex]k=y/x=5/2=2.5[/tex]

For [tex]x=3, y=7[/tex] -----> [tex]k=y/x=7/3[/tex]

For [tex]x=4, y=9[/tex] -----> [tex]k=y/x=9/4[/tex]

the values of k are different

therefore

The table D not shows y as DIRECTLY PROPORTIONAL to x

Answer:

b

Step-by-step explanation: