Respuesta :
Answer:
There is only one zero pair added i.e. 9.
Step-by-step explanation:
Given : Function [tex]f(x)=x^2-6x+1[/tex]
To find : How many zero pairs must be added to the function in order to begin writing the function in vertex form?
Solution :
Converting the given function into vertex form,
[tex]f(x)=x^2-6x+1[/tex]
Adding and subtracting square of 3,
[tex]f(x)=x^2-6x+(3)^2-(3)^2+1[/tex]
Square form as [tex]a^2-2ab+b^2=(a-b)^2[/tex]
[tex]f(x)=(x-3)^2-9+1[/tex]
[tex]f(x)=(x-3)^2-8[/tex]
So, The required vertex form is [tex]f(x)=(x-3)^2-8[/tex]
There is only one zero pair added i.e. 9.