Respuesta :

(3,-8) that the answer

Answer:

There is only one zero pair added i.e. 9.                                          

Step-by-step explanation:

Given : Function [tex]f(x)=x^2-6x+1[/tex]

To find : How many zero pairs must be added to the function  in order to begin writing the function in vertex form?  

Solution :

Converting the given function into vertex form,

[tex]f(x)=x^2-6x+1[/tex]

Adding and subtracting square of 3,

[tex]f(x)=x^2-6x+(3)^2-(3)^2+1[/tex]

Square form as [tex]a^2-2ab+b^2=(a-b)^2[/tex]

[tex]f(x)=(x-3)^2-9+1[/tex]

[tex]f(x)=(x-3)^2-8[/tex]

So, The required vertex form is [tex]f(x)=(x-3)^2-8[/tex]

There is only one zero pair added i.e. 9.