Respuesta :

Answer:

2950 m

Explanation:

The radius to which the sun must be compressed to become a black hole is equal to the Schwarzschild radius, defined as:

[tex]R=\frac{2GM}{c^2}[/tex]

where

G is the gravitational constant

M is the of the sun

c is the speed of light

The mass of the sun is

[tex]M=1.99\cdot 10^{30}kg[/tex]

So, if we substitute the values of the other constants inside the formula, we find the value of the Schwarzschild radius for the sun:

[tex]R=\frac{2(6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2})(1.99\cdot 10^{30} kg)}{(3\cdot 10^8 m/s)^2}=2950 m[/tex]