Respuesta :

Answer:

Part a) [tex]PM=6\ in[/tex]

Part b) [tex]PQ=12\ in[/tex]

Step-by-step explanation:

step 1

we know that

The diameter of the circle divide the circle into two equal parts

so

PM=MQ

Applying the Intersecting Chord Theorem (When two chords intersect each other inside a circle, the products of their segments are equal)

[tex]SM*RM=PM*MQ[/tex]

[tex]SM*RM=PM^{2}[/tex]

we have

[tex]SM=13-4=9\ in[/tex]

[tex]RM=4\ in[/tex]

substitute

[tex]9*4=PM^{2}[/tex]

[tex]PM^{2}=36[/tex]

[tex]PM=6\ in[/tex]

step 2

Find the value of PQ

we know that

[tex]PM=MQ[/tex]

so

[tex]PQ=PM+MQ[/tex]

[tex]PQ=2PM[/tex]

we have

[tex]PM=6\ in[/tex]

substitute

[tex]PQ=2(6)=12\ in[/tex]