Find the area, in square feet, of a triangle whose base is 42⁄3 feet and whose altitude is 84⁄7 feet. A. 135⁄21 B. 20 C. 40 D. 2610⁄21

Respuesta :

Answer:

Option B. [tex]20\ ft^{2}[/tex]

Step-by-step explanation:

we know that

The area of a triangle is equal to

[tex]A=\frac{1}{2}bh[/tex]

we have

[tex]b=4\frac{2}{3}\ ft[/tex]

[tex]h=8\frac{4}{7}\ ft[/tex]

Convert mixed numbers to an improper fractions

[tex]b=4\frac{2}{3}\ ft=\frac{4*3+2}{3}=\frac{14}{3}\ ft[/tex]

[tex]h=8\frac{4}{7}\ ft=\frac{8*7+4}{7}=\frac{60}{7}\ ft[/tex]

substitute the values

[tex]A=\frac{1}{2}(\frac{14}{3})(\frac{60}{7})\\ \\A=\frac{14*60}{2*3*7}\\ \\A=\frac{840}{42} \\ \\A=20\ ft^{2}[/tex]

Answer: B. 20

Step-by-step explanation:

Hi to answer this question we have to apply the next formula:

Area of a triangle: base x height (altitude) x 1/2

Replacing with the values given:

A =4 2/3 x 8 4/7 x 1/2

A= (4x3+2)/3 x (8x7+4)/7 x 1/2

A = 14/3 x 60/7 x 1/2 = 840/42=20 square feet

So, the correct option is B.20

Feel free to ask for more if needed or if you did not understand something.