Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a ,-separated list. If an answer does not exist, enter DNE.) f(x, y) = x3 + y3 − 3x2 − 3y2 − 9x

Respuesta :

Answer:

A(-1,0) is a local maximum point.

B(-1,0)  is a saddle point

C(3,0)  is a saddle point

D(3,2) is a local minimum point.

Step-by-step explanation:

The given function is  

[tex]f(x,y)=x^3+y^3-3x^2-3y^2-9x[/tex]

The first partial derivative with respect to x is  

[tex]f_x=3x^2-6x-9[/tex]

The first partial derivative with respect to y is  

[tex]f_y=3y^2-6y[/tex]

We now set each equation to zero to obtain the system of equations;

[tex]3x^2-6x-9=0[/tex]

[tex]3y^2-6y=0[/tex]

Solving the two equations simultaneously, gives;

[tex]x=-1,x=3[/tex]  and [tex]y=0,y=2[/tex]

The critical points are

A(-1,0), B(-1,2),C(3,0),and D(3,2).

Now, we need to calculate the discriminant,

[tex]D=f_{xx}(x,y)f_{yy}(x,y)-(f_{xy}(x,y))^2[/tex]

But, we would have to calculate the second partial derivatives first.

[tex]f_{xx}=6x-6[/tex]

[tex]f_{yy}=6y-6[/tex]

[tex]f_{xy}=0[/tex]

[tex]\Rightarrow D=(6x-6)(6y-6)-0^2[/tex]

[tex]\Rightarrow D=(6x-6)(6y-6)[/tex]

At A(-1,0),

[tex]D=(6(-1)-6)(6(0)-6)=72\:>\:0[/tex] and [tex]f_{xx}=6(-1)-6=-18\:<\:0[/tex]

Hence A(-1,0) is a local maximum point.

See graph

At B(-1,2);

[tex]D=(6(-1)-6)(6(2)-6)=-72\:<\:0[/tex]

Hence, B(-1,0) is neither a local maximum or a local minimum point.

This is a saddle point.

At C(3,0)

[tex]D=(6(3)-6)(6(0)-6)=-72\:<\:0[/tex]

Hence, C(3,0) is neither a local minimum or maximum point. It is a saddle point.

At D(3,2),

[tex]D=(6(3)-6)(6(2)-6)=72\:>\:0[/tex] and [tex]f_{xx}=6(3)-6=12\:>\:0[/tex]

Hence D(3,2) is a local minimum point.

See graph in attachment.

Ver imagen kudzordzifrancis
Ver imagen kudzordzifrancis

Answer:

A(-1,0) is a local maximum point.

B(-1,2) is saddle point.

C(3,0) is also a saddle point

D(3,2) is the minimum point.

Step-by-step explanation:

Given information:

The function : [tex]f(x,y)=x^3=y^3-3x^2-3y^2-9x[/tex]

The first partial derivative with respect to x is:

[tex]f'_x=3x^2-6x-9[/tex]

And the partial derivative with respect to y is:

[tex]f'_y=3y^2-6y[/tex]

Now equate the above derivatives to zero, to obtain the system of equation:

[tex]3x^2-6x-9=0[/tex]

[tex]3y^2-6y=0[/tex]

On solving the two equations:

The critical points are : A(-1,0), B(-1,-2), C(3,0) and D(3,2)

Now calculate the discriminant

[tex]D=f{xx}(x,y)f_{yy}(x,y)-f_{xy}(x,y)^2[/tex]

Here,

[tex]f_{xx}=6x-6\\f_{yy}=6y-6\\f_{xy}=0\\[/tex]

On putting the above values we get:

[tex]D=(6x-6)(6y-6)[/tex]

At, A(-1,0)

[tex]D=-18<0[/tex]

Hence , A(-1,0) is a local maximum point.

At, B(-1,2)

[tex]D=-72<0\\[/tex]

Hence B(-1,2) is saddle point.

At, C(3,0)

[tex]D=-72[/tex]

Hence C(3,0) is also a saddle point

At, D(3,2)

[tex]D=12>0[/tex]

Hence , D(3,2) is the minimum point.

For more information visit:

https://brainly.com/question/3459666?referrer=searchResults