Answer:
See below
Step-by-step explanation:
Here are some standard derivatives we will be using:
ƒ(x) ⟶ f'(x)
sin(x) ⟶ cos(x)
cos(x) ⟶ -sin(x)
[tex]e^{ax} \longrightarrow ae^{ax}[/tex]
gh ⟶ gh' + hg'
[tex]f(x) = e^{2x}\sin(x)\\f'(x) = e^{2x}\cos(x) + 2e^{2x}\sin(x) \\f''(x)=-e^{2x}\sin(x) + e^{2x}\cos(x)+2e^{2x}\cos(x) + 4e^{2x}\sin(x)[/tex]
[tex]f''(x)= 4e^{2x}\cos(x)+ 3e^{2x}\sin(x)[/tex]