Respuesta :

znk

Answer:

See below  

Step-by-step explanation:

Here are some standard derivatives we will be using:

ƒ(x)   ⟶  f'(x)    

sin(x)  ⟶  cos(x)

cos(x) ⟶ -sin(x)

[tex]e^{ax} \longrightarrow ae^{ax}[/tex]

gh     ⟶ gh' + hg'

[tex]f(x) = e^{2x}\sin(x)\\f'(x) = e^{2x}\cos(x) + 2e^{2x}\sin(x) \\f''(x)=-e^{2x}\sin(x) + e^{2x}\cos(x)+2e^{2x}\cos(x) + 4e^{2x}\sin(x)[/tex]

[tex]f''(x)= 4e^{2x}\cos(x)+ 3e^{2x}\sin(x)[/tex]