Answer: 22 hours 11 minutes
Step-by-step explanation:
[tex]P=P_o\cdot e^{(kt)}\\\\\text{Since the initial population is doubled in 14 hours, then:}\\2P_o=P_o\cdot e^{k\cdot 14}\\2=e^{14k}\\ln\ 2=ln\ e^{14k}\\ln\ 2=14k\\\\\dfrac{ln\ 2}{14}=k\\\\0.0495=k\\\\\\\text{Now that the k-value has been determined, we can find the time when the}\\\text{population is tripled:}\\3P_o=P_o\cdot e^{0.0495t}\\3=e^{0.0495t}\\ln\ 3=ln\ e^{0.0495t}\\ln\ 3=0.0495t\\\\\dfrac{ln\ 3}{0.0495}=5\\\\22.19=t\\\\22\ hrs +0.19\ hrs[/tex]
[tex]22\ hours + \bigg[\dfrac{19}{100}=\dfrac{x}{60}\bigg]\\\\22\ hours + 11\ minutes[/tex]