Respuesta :
Answer:
109
Step-by-step explanation:
Given arithmetic progression 19 + 20.5 + 22 + 23.5 + ... + 181
Here the first terma_1=19
The last term=a_n=181
The common differenced=a_2-a_1=20.5-19=1.5
We know that for n terms , the last term a_n=a_1+(n+1)d
19+(n-1)1.5=181\\\Rightarrow(n-1)1.5=181-19\\\Rightarrrow(n-1)1.5=162\\\Rightarrow(n-1)=\frac{162}{1.5}\\\Rightarrow\ n-1=108\\\Rightarrow\ n=108+1\\\Rightarrow\ n=109
The numbers are 109 in the arithmetic expression.
What is arithmetic progression?
The sequence in which every next number is the addition of the constant quantity in the series is termed the arithmetic progression.
Given arithmetic progression 19 + 20.5 + 22 + 23.5 + ... + 181
Here the first term a₁=19
The last term=an=181
The common difference is,
d=a₂-a₁=20.5-19=1.5
We know that for n terms, the last term, an=a₁+(n+1)d
19+(n-1)1.5=181
(n-1)1.5=181-19
(n-1)1.5=162
(n-1)={162}{1.5}
n-1=108
n=108+1
n=109
Hence, the numbers are 109 in the series.
To know more about arithmetic progression follow
https://brainly.com/question/6561461
#SPJ2