Respuesta :

Answer:

109

Step-by-step explanation:

Given arithmetic progression 19 + 20.5 + 22 + 23.5 + ... + 181

Here the first terma_1=19

The last term=a_n=181

The common differenced=a_2-a_1=20.5-19=1.5

We know that for n terms , the last term a_n=a_1+(n+1)d

19+(n-1)1.5=181\\\Rightarrow(n-1)1.5=181-19\\\Rightarrrow(n-1)1.5=162\\\Rightarrow(n-1)=\frac{162}{1.5}\\\Rightarrow\ n-1=108\\\Rightarrow\ n=108+1\\\Rightarrow\ n=109

The numbers are 109 in the arithmetic expression.

What is arithmetic progression?

The sequence in which every next number is the addition of the constant quantity in the series is termed the arithmetic progression.

Given arithmetic progression 19 + 20.5 + 22 + 23.5 + ... + 181

Here the first term a₁=19

The last term=an=181

The common difference is,

d=a₂-a₁=20.5-19=1.5

We know that for n terms, the last term, an=a₁+(n+1)d

19+(n-1)1.5=181

(n-1)1.5=181-19

(n-1)1.5=162

(n-1)={162}{1.5}

n-1=108

n=108+1

n=109

Hence, the numbers are 109 in the series.

To know more about arithmetic progression follow

https://brainly.com/question/6561461

#SPJ2