Respuesta :
A) Initial moles of NH3 = 75/1000 x 0.200 = 0.015 mol
Moles of HNO3 added = 28/1000 x 0.500 = 0.014 mol
NH3 + HNO3 => NH4+ + NO3-
Moles of NH3 left = 0.015 - 0.014 = 0.001 mol
Moles of NH4+ = 0.014 mol
Ka(NH4+) = Kw/Kb(NH3)
= 10-14/1.8 x 10-5 = 5.556 x 10-10
Henderson-Hasselbalch equation:
pH = pKa + log([NH3]/[NH4+])
= -log Ka + log(moles of NH3/moles of NH4+) since volume is the same for both
= -log(5.556 x 10-10) + log(0.0065/0.014)
= 8.14
Answer : The pH after the addition of 28.0 ml of [tex]HNO_3[/tex] is, 8.1
Explanation :
First we have to calculate the moles of [tex]NH_3[/tex] and [tex]HNO_3[/tex].
[tex]\text{Moles of }NH_3=\text{Concentration of }NH_3\times \text{Volume of solution}=0.200M\times 0.075L=0.015mole[/tex]
[tex]\text{Moles of }HNO_3=\text{Concentration of }HNO_3\times \text{Volume of solution}=0.500M\times 0.028L=0.014mole[/tex]
The balanced chemical reaction is,
[tex]NH_3+HNO_3\rightarrow NH_4^++NO_3^-[/tex]
Moles of [tex]NH_3[/tex] left = Initial moles of [tex]NH_3[/tex] - Moles of [tex]HNO_3[/tex] added
Moles of [tex]NH_3[/tex] left = 0.015 - 0.014 = 0.001 mole
Moles of [tex]NH_4^+[/tex] = 0.014 mole
Now we have to calculate the [tex]K_a[/tex].
[tex]K_a\times K_b=K_w[/tex]
[tex]K_a=\frac{K_w}{K_b}=\frac{1\times 10^{-14}}{1.8\times 10^{-5}}=5.55\times 10^{-10}[/tex]
Now we have to calculate the [tex]pK_a[/tex]
[tex]pK_a=-\log (5.55\times 10^{-10})[/tex]
[tex]pK_a=9.25[/tex]
Now we have to calculate the pH by using Henderson-Hasselbalch equation.
[tex]pH=pK_a+\log \frac{[NH_3]}{[NH_4^+]}[/tex]
Now put all the given values in this expression, we get:
[tex]pH=9.25+\log (\frac{0.001}{0.014})[/tex]
[tex]pH=8.1[/tex]
Therefore, the pH after the addition of 28.0 ml of [tex]HNO_3[/tex] is, 8.1