Respuesta :

Answer: [tex]18\sqrt{91}[/tex]

Step-by-step explanation:

You must apply the following formula for calculate  the lateral area the regular pyramid:

Where p is the perimeter of the base and l is the slant height:

[tex]LA=\frac{p*l}{2}[/tex]

Find the apothem of the hexagonal base:

[tex]a=\frac{s}{2tan(\frac{180}{n})}[/tex]

Where s is the side length and n is the number of sides the polygon.

[tex]s=6\\n=6[/tex]

Then:

 [tex]a=\frac{6}{2tan(\frac{180}{6})}[/tex]

[tex]a=3\sqrt{3}[/tex]

Apply the Pythagorean  Theorem to find the slant height:

[tex]l=\sqrt{(3\sqrt{3})^2+8^2}=\sqrt{91}[/tex]

The perimeter is:

[tex]p=6*s=6*6=36[/tex]

Susbtituting values, you obtain:

[tex]LA=\frac{36*\sqrt{91}}{2}=18\sqrt{91}[/tex]

Answer:

[tex]18\sqrt{91}[/tex]