Answer:
3) At day 10 there are more SARS cases, but at day 53 there are more Ebola cases.
Step-by-step explanation:
First let's get our variables.
Ebola Rate = 11% or 0.11
SARS Rate = 4% or 0.04
x = number of days
Let Ebola = e(x)
Let SARS = s(x)
So the total number of cases are:
e(x) = [tex]1(1.11)^{x}[/tex]
s(x) = [tex]30(1.04)^{x}[/tex]
At day 10:
e(10) = [tex]1(1.11)^{10}[/tex]
e(10) = [tex]1(2.84)[/tex]
e(10) = [tex]2.84[/tex]
s(10) = [tex]30(1.04)^{10}[/tex]
s(10) = [tex]30(1.48)[/tex]
s(10) = [tex]44.41[/tex]
So at day 10 the number of cases of Ebola will be 2 and SARS at 44.
At day 53:
e(53) = [tex]1(1.11)^{53}[/tex]
e(53) = [tex]1(252.42)[/tex]
e(53) = [tex]252.42[/tex]
s(53) = [tex]30(1.04)^{53}[/tex]
s(53) = [tex]30(7.99)[/tex]
s(53) = [tex]239.82[/tex]
By day 53, Ebola will overtake SARS at 252 cases to 239 cases.