Respuesta :

Answer:

[tex]M.A.D=4[/tex]

Step-by-step explanation:

The given data set is :{63, 70, 68, 73, 58, 67}

The mean absolute deviation is the mean of how far all the entries in the data set are from the mean. Follow the procedure below;

  • find the mean of the data set
  • find the absolute value of the difference between the mean and each entry.
  • find the mean of these entries.

The mean is give by:

[tex]\bar X=\frac{\sum x}{n}[/tex]

[tex]\bar X=\frac{63+70+68+73+58+67}{6}[/tex]

[tex]\bar X=\frac{399}{6}=66.5[/tex]

The mean absolute deviation is given by:

[tex]M.A.D=\frac{\sum |x-\bar X|}{n}[/tex]

[tex]M.A.D=\frac{|63-66.5|+|70-66.5|+|68-66.5|+|73-66.5|+|58-66.5|+|67-66.5|}{6}[/tex]

[tex]M.A.D=\frac{3.5+3.5+1.5+6.5+8.5+0.5}{6}[/tex]

[tex]M.A.D=\frac{24}{6}=4[/tex]

Answer:

4

Step-by-step explanation:

Mean absolute deviation means mean of the absolute deviation around mean

so, first we calculate the mean

Mean= sum of all observations/total number of observations

       = (63+70+68+73+58+67)/6

       =66.5

Absolute deviations around mean:

|63-66.5|=3.5

|70-66.5|=3.5

|68-66.5|=1.5

|73-66.5|=6.5

|58-66.5|=8.5

|67-66.5|=0.5

Mean of absolute deviation around mean=(3.5+3.5+1.5+6.5+8.5+0.5)/6

                                                                    = 4

Hence, mean absolute deviation is:

4