Respuesta :

Answer:

It's is A  and   D.

Step-by-step explanation:

Tan^2 theta cos 2theta

= (sin^2 theta / cos^2 theta )( 2 cos^2 theta - 1)

= 2 sin^2 theta  - sin^2 theta / cos^2 theta

= 2 sin^2 theta - tan^2 theta.

Tan^2 theta  cos 2theta

= ( 1 / cot^2 theta) * cos 2theta

= cos 2theta / cot^2 theta.

The simplified forms of the expression [tex]tan^2(\theta)cos(2\theta)[/tex] would be[tex]2 sin^2 \theta- tan^2 \theta.[/tex] and [tex]\frac{ cos 2\theta}{ cot^2 \theta}[/tex]. So It's is A  and D.

What are trigonometric functions?

Trigonometric functions are the functions that include trigonometric functions such as sine, cosine, tangents, secant, and, cot.

The expression is given as

[tex]tan^2(\theta)cos(2\theta)[/tex]

The simplified form

[tex]= (sin^2 \theta / cos^2 \theta)( 2 cos^2 \theta- 1)\\= 2 sin^2 \theta- sin^2 \theta/ cos^2 \theta\\= 2 sin^2 \theta- tan^2 \theta.[/tex]

similarly the simplified form

[tex]tan^2(\theta)cos(2\theta)[/tex]

[tex]= ( 1 / cot^2 \theta) \times cos 2 \theta\\\\=\frac{ cos 2\theta}{ cot^2 \theta}[/tex]

Learn more about trigonometric;

https://brainly.com/question/21286835

#SPJ2