Respuesta :

Hello!

The answer is: A. 19.3 joules

Why?

Since it's an elastic collision, the kinetic energy after and before the collision will be the same.

Kinetic energy can be calculated using the following equation:

[tex]KE=\frac{1}{2}mv^{2}[/tex]

Where:

[tex]KE=KineticEnergy\\m=mass\\v=velocity[/tex]

So,

First object, (going to the right):

[tex]m=7.20kg\\v=2\frac{m}{s}[/tex]

[tex]KE_{1}=\frac{1}{2}*7.20Kg*(2\frac{m}{s})^{2}=14.4Joules[/tex]

Second object:, (going to the left):

[tex]m=5.75kg\\v=-1.30\frac{m}{s}[/tex]

[tex]KE_{2}=\frac{1}{2}*5.75kg*(-1.30\frac{m}{s})^{2}=4.86Joules[/tex]

Remember,

[tex]1Joule=1Kg.\frac{m^{2}}{s^{2} }[/tex]

Hence,

The total kinetic energy after the collision will be:

[tex]T=KE_{1}+KE_{2}=14.4Joules+4.86joules=19.26joules=19.3joules[/tex]

The total kinetic energy after the collision is 19.3 joules (rounded to the nearest tenth)

Have a nice day!