Respuesta :

Answer:

[tex]y=\frac{1}{4}x-\frac{3}{2}[/tex] (Slope intercept form)

[tex]y+1=\frac{1}{4}(x_-2)[/tex] (Slope point form)

Step-by-step explanation:

The slope of the line can be calculated as following:

[tex]m=\frac{-1-(-2)}{2-(-2)}=1/4[/tex]

The the equation of the line in slope point form is:

[tex]y-y_1=m(x_-x_1)[/tex]

Where ([tex]x_1[/tex],[tex]y_1[/tex]) is a point of the line.

Then you must susbtitute the point given and the slope and you obtain:

[tex]y+1=\frac{1}{4}(x_-2)[/tex]

The intercept form is:

[tex]y=mx+b[/tex]

Where b is the y-intercept.

Solve for y from the equation of the line in slope point form obtained above, then:

[tex]y+1=\frac{x}{4}-\frac{2}{4}\\y=\frac{1}{4}x-\frac{2}{4}-1\\y=\frac{1}{4}x-\frac{3}{2}[/tex]