Respuesta :

Answer:

True

Step-by-step explanation:

Given that a function is

[tex]f(x)=\frac{x^2-4x+1}{2x-3}[/tex]

We are to find the slant asymptote if any for this function

Since numerator is of degree 2 and denominator 1, let us divide and then check

Doing long division we find

[tex]f(x)=\frac{1}{2} [x-\frac{5}{2} ]-\frac{11}{4(2x-3)}[/tex]

Thus we find the asymptote y= the quotient obtained i.e

[tex]\frac{1}{2} [x-\frac{5}{2} ]\\=\frac{x}{2} -\frac{5}{4}[/tex]

Hence asymptote is

[tex]y=1/2x-5/4[/tex]

Statement given is true.