Respuesta :

7. Answer: P(x) = [tex]\bold{\dfrac{3}{4}}[/tex](x³ 1 x² - 10x + 6)

Step-by-step explanation:

The factored form of a polynomial is: a(x - p)(x-q)...(x-z) . where p, q, ..., z are the roots.

Convert the roots into factors, include conjugates of any complex roots, and multiply all of the factors.  Then find the a-value.

roots:       x = 3               x = 2 + √2                    x = 2 - √2     (conjugate)

factors:    x - 3 = 0          x - 2 - √2 = 0               x - 2 + √2 = 0

                             (x - 3)(x - 2 - √2)(x - 2 + √2)

                          multiply the complex roots:      

                               (x + 3)(x² - 4x + 2)

          distribute (x + 3) to find the basic polynomial

                                x³ + x² - 10x + 6

Next, find the a-value:

P(x) = a(x³ + x² - 10x + 6)

P(1) = a(1 - 1 - 10 + 6) = -3

                           -4a = -3

                               [tex]a=\dfrac{3}{4}[/tex]

[tex]\boxed{P(x)=\dfrac{3}{4}(x^3-x^2-10x+6)}[/tex]

***********************************************************************************

8. Answer: P(x) = [tex]\bold{\dfrac{1}{2}}[/tex](x⁴ + 8)

Step-by-step explanation:

The factored form of a polynomial is: a(x - p)(x-q)...(x-z) . where p, q, ..., z are the roots.

Convert the roots into factors, include conjugates of any complex roots, and multiply all of the factors.  Then find the a-value.

roots:       x = -2               x = 1 + i                    x = 1 - i     (conjugate)

factors:    x + 2 = 0          x - 1 - i = 0               x - 1 + i = 0

The polynomial has a degree of 4, so x = -2 must be a double root.

                              (x + 2)²(x - 1 - i)(x - 1 + i)

               multiply the double root & complex roots:

                             (x² + 4x + 4)(x² - 2x + 2)

           distribute (x² + 4x + 4) to find the basic polynomial

                                         x⁴ + 8

Next, find the a-value:

P(x) = a(x⁴ + 8)

P(0) = a(0 + 8) = 4

                  8a = 4

                     [tex]a=\dfrac{1}{2}[/tex]              

[tex]\boxed{P(x)=\dfrac{1}{2}(x^4+8)}[/tex]

***********************************************************************************

9. Answer: P(x) = [tex]\bold{-\dfrac{1}{2}}[/tex](x⁴ - x³ - 6x²)

Step-by-step explanation:

The factored form of a polynomial is: a(x - p)(x-q)...(x-z) . where p, q, ..., z are the roots. The roots are where the graph crosses the x-axis.

roots:       x = -2               x = 0                   x = 3

factors:    x + 2 = 0          x  = 0                  x - 3 = 0

The graph "touches - not crosses" the x-axis at x = 0 so x = 0 is a double root.

                                 (x + 2)(x)²(x - 3)

               multiply the factors (x + 2)(x - 3):

                                  x²(x² - x - 6)

           distribute (x)² to find the basic polynomial

                                 x⁴ - x³ - 6x²

Next, find the a-value:

P(x) = a(x⁴ - x³ - 6x²)

P(2) = a[(2)⁴ -(2)³ - 6(2)²] = 8

         a(16 - 8 - 24) = 8

                  -16a = 8

                     [tex]a=-\dfrac{1}{2}[/tex]              

[tex]\boxed{P(x)=-\dfrac{1}{2}(x^4-x^3-6x^2)}[/tex]

***********************************************************************************

10. Answer: P(x) = -(x³ - 2x² + x - 2)

Step-by-step explanation:

The graph displayed is an x³ graph that has been shifted to the left 2 units and reflected over the x-axis.  Only one root is shown, which means the other two roots are complex numbers.  Since P(i) = 0, then another root is: x = i

roots:       x = -2               x =  i                    x =  - i     (conjugate)

factors:    x + 2 = 0          x - i = 0               x + i = 0

                              (x + 2)(x - i)(x + i)

                    multiply the complex roots:

                             (x + 2)(x² + 1)

           distribute (x + 2) to find the basic polynomial

                                    x³  - 2x² + x - 2

Next, reflect over the x-axis:

P(x) = - (x³  - 2x² + x - 2)

Answer:

the pdf wont load

Step-by-step explanation: