Respuesta :

Answer: B:  [tex] (4x+5)(16x^2-20x+25)[/tex]

Step-by-step explanation:

[tex]a^3+b^3= (a+b)(a^2-ab+b^2)[/tex]

Thus,

[tex]64x^3+125[/tex]

[tex]=(4x)^3 + (5)^3[/tex]

[tex]= (4x+5)((4x)^2-4x\times 5 + (5)^2)[/tex]

[tex]= (4x+5)(16x^2-20x+25)[/tex]

[tex]\implies 64x^3+125=(4x+5)(16x^2-20x+25)[/tex]

Second option is correct.

Answer:

Choice B is correct answer.

Step-by-step explanation:

We have given a polynomial.

64x³+125

We have to factorize given polynomial.

We use following formula to solve it.

a³+b³ = (a+b)(a²-ab+b²)

64x³+125 = (4x)³+(5)³

Using above formula , we have

64x³+125 = (4x+5)((4x)²-(4x)(5)+(5)²)

64x³+125 = (4x+5)(16x²-20x+25) which is the answer.