Respuesta :
Answer:
[tex]x=30\ degrees[/tex]
[tex]m<A=25\°[/tex]
[tex]m<B=120\°[/tex]
Step-by-step explanation:
we know that
The sum of interior angles in a triangle must be equal to 180 degrees
so
[tex](x-5)+(3x+30)+(35)=180\°[/tex]
solve for x
[tex]4x=180\°-60\°[/tex]
[tex]4x=120\°[/tex]
[tex]x=30\°[/tex]
[tex]m<A=x-5=30\°-5\°=25\°[/tex]
[tex]m<B=3x+30=3*30\°+30\°=120\°[/tex]
Answer:
The value of x = 30
Step-by-step explanation:
It is given that,
In triangle ABC,
<A = x - 5, <B = 3x + 30 and <C = 35
To find the value of x
<A + <B + <C = 180 [ angle sum property]
(x - 5 ) + (3x + 30 ) + 35 = 180
x - 5 + 3x + 30 + 35 = 180
x + 3x - 5 + 30 + 35 = 180
4x + 60 = 180
4x = 180 - 60
4x = 120
x = 120/4 = 30
Therefore the value of x = 30
To find <A and <B
<A = x - 5
<A = 30 - 5 = 25°
<B = 3x + 30
<B = 3*30 + 30 = 90 + 30 = 120°