Respuesta :

Answer:

[tex]x=30\ degrees[/tex]

[tex]m<A=25\°[/tex]

[tex]m<B=120\°[/tex]

Step-by-step explanation:

we know that

The sum of interior angles in a triangle must be equal to 180 degrees

so

[tex](x-5)+(3x+30)+(35)=180\°[/tex]

solve for x

[tex]4x=180\°-60\°[/tex]

[tex]4x=120\°[/tex]

[tex]x=30\°[/tex]

[tex]m<A=x-5=30\°-5\°=25\°[/tex]

[tex]m<B=3x+30=3*30\°+30\°=120\°[/tex]

Answer:

The value of x = 30

Step-by-step explanation:

It is given that,

In triangle ABC,

<A = x - 5, <B =  3x + 30 and <C = 35

To find the value of x

<A + <B + <C = 180   [ angle sum property]

(x - 5 ) + (3x + 30 ) + 35 = 180

x - 5 + 3x + 30 + 35 = 180

x + 3x - 5 + 30 + 35 = 180

4x + 60 = 180

4x = 180 - 60

4x = 120

x = 120/4 = 30

Therefore the value of x = 30

To find <A and <B

<A = x - 5

<A = 30 - 5 = 25°

<B =  3x + 30

<B = 3*30 + 30 = 90  + 30 = 120°