Respuesta :

It's quite easy.

We have to put just values of sin60°, cos60° and tan30° in the given expression.

[tex] \: \: \: (2 \sin(60))(3 \cos(60)) + (3 \tan(30)) \\ = (2 \times \frac{ \sqrt{3} }{2})(3 \times \frac{1}{2}) + (3 \times \frac{1}{ \sqrt{3} }) \\ = \sqrt{3} \times \frac{3}{2} + \sqrt{3} \\ = \sqrt{3}( \frac{3}{2} + 1) \\ = \sqrt{3} \times \frac{5}{2} \\ = \frac{5 \sqrt{3} }{2}. [/tex]

Hope this will help you. 

If you like my answer

Please mark it as brainliest 

And 

Be my follower if possible.

Answer:

3 sin(120) + 3 tan(30)

Or

-17.47416

Step-by-step explanation:

(2 sin 60°) * (3 cos 60°) + 3 tan 30°

= 2 sin (60) * 3 cos (60) + 3 tan (30)

= 6 sin (60) cos (60) + 3 tan (30)

Using

2*sin(t)*cos (t)=sin(2*t)

Simplify the expression

3 sin (120) + 3 tan (30)

= - 17.47416