Respuesta :
It's quite easy.
We have to put just values of sin60°, cos60° and tan30° in the given expression.
[tex] \: \: \: (2 \sin(60))(3 \cos(60)) + (3 \tan(30)) \\ = (2 \times \frac{ \sqrt{3} }{2})(3 \times \frac{1}{2}) + (3 \times \frac{1}{ \sqrt{3} }) \\ = \sqrt{3} \times \frac{3}{2} + \sqrt{3} \\ = \sqrt{3}( \frac{3}{2} + 1) \\ = \sqrt{3} \times \frac{5}{2} \\ = \frac{5 \sqrt{3} }{2}. [/tex]
Hope this will help you.
If you like my answer
Please mark it as brainliest
And
Be my follower if possible.
Answer:
3 sin(120) + 3 tan(30)
Or
-17.47416
Step-by-step explanation:
(2 sin 60°) * (3 cos 60°) + 3 tan 30°
= 2 sin (60) * 3 cos (60) + 3 tan (30)
= 6 sin (60) cos (60) + 3 tan (30)
Using
2*sin(t)*cos (t)=sin(2*t)
Simplify the expression
3 sin (120) + 3 tan (30)
= - 17.47416