Respuesta :

Answer:

Additive inverse is [tex]g(x)=6x^{2}-x+2[/tex]

Step-by-step explanation:

We have the function [tex]f(x)=-6x^{2}+x-2[/tex].

Now, for the additive inverse, we have the property that, there exists a function g(x) such that f(x)+g(x) = g(x)+f(x) = 0.

So, we have,

f(x)+g(x) = g(x)+f(x) = 0

i.e. [tex](-6x^{2}+x-2)+g(x)=g(x)+(-6x^{2}+x-2)=0[/tex]

i.e. [tex](-6x^{2}+x-2)+g(x)=0[/tex] and [tex]g(x)+(-6x^{2}+x-2)=0[/tex]

i.e. [tex]g(x)=6x^{2}-x+2[/tex] and  [tex]g(x)=6x^{2}-x+2[/tex]

i.e. [tex]g(x)=6x^{2}-x+2[/tex]

Thus, the additive inverse of [tex]f(x)=-6x^{2}+x-2[/tex] is [tex]g(x)=6x^{2}-x+2[/tex].

Answer:

The additive inverse is [tex]A=6x^2-x+2[/tex]

Step-by-step explanation:

The given expression is

[tex]-6x^2+x-2[/tex]

Let the additive inverse of given expression be A.

The sum of a term and its additive inverse is 0.

If,

[tex]a+(-a)=0[/tex]

Then additive inverse of a is -a.

[tex](-6x^2+x-2)+A=0[/tex]

[tex]A=6x^2-x+2[/tex]

Therefore the additive inverse is [tex]A=6x^2-x+2[/tex].