Respuesta :
Answer:
Additive inverse is [tex]g(x)=6x^{2}-x+2[/tex]
Step-by-step explanation:
We have the function [tex]f(x)=-6x^{2}+x-2[/tex].
Now, for the additive inverse, we have the property that, there exists a function g(x) such that f(x)+g(x) = g(x)+f(x) = 0.
So, we have,
f(x)+g(x) = g(x)+f(x) = 0
i.e. [tex](-6x^{2}+x-2)+g(x)=g(x)+(-6x^{2}+x-2)=0[/tex]
i.e. [tex](-6x^{2}+x-2)+g(x)=0[/tex] and [tex]g(x)+(-6x^{2}+x-2)=0[/tex]
i.e. [tex]g(x)=6x^{2}-x+2[/tex] and [tex]g(x)=6x^{2}-x+2[/tex]
i.e. [tex]g(x)=6x^{2}-x+2[/tex]
Thus, the additive inverse of [tex]f(x)=-6x^{2}+x-2[/tex] is [tex]g(x)=6x^{2}-x+2[/tex].
Answer:
The additive inverse is [tex]A=6x^2-x+2[/tex]
Step-by-step explanation:
The given expression is
[tex]-6x^2+x-2[/tex]
Let the additive inverse of given expression be A.
The sum of a term and its additive inverse is 0.
If,
[tex]a+(-a)=0[/tex]
Then additive inverse of a is -a.
[tex](-6x^2+x-2)+A=0[/tex]
[tex]A=6x^2-x+2[/tex]
Therefore the additive inverse is [tex]A=6x^2-x+2[/tex].