Answer:
XY measures √26units.
XYZ is an isosceles triangle.
XYZ is a right triangle.
Step-by-step explanation:
The given triangle has vertices [tex]X(-1,5),Y(4,4),(-2,0)[/tex]
We now apply the distance formula to find the length of all sides to obtain;
[tex]|XY|=\sqrt{(4--1)^2+(4-5)^2}[/tex]
[tex]|XY|=\sqrt{(4+1)^2+(4-5)^2}[/tex]
[tex]|XY|=\sqrt{5^2+(-1)^2}[/tex]
[tex]|XY|=\sqrt{25+1}[/tex]
[tex]|XY|=\sqrt{26}[/tex]
The length of YZ is
[tex]|YZ|=\sqrt{(4--2)^2+(4-0)^2}[/tex]
[tex]|YZ|=\sqrt{(4+2)^2+(4-0)^2}[/tex]
[tex]|YZ|=\sqrt{6^2+(4)^2}[/tex]
[tex]|YZ|=\sqrt{36+16}[/tex]
[tex]|YZ|=\sqrt{52}[/tex]
The length of ZX is
[tex]|ZX|=\sqrt{(-2--1)^2+(0-5)^2}[/tex]
[tex]|ZX|=\sqrt{(-2+1)^2+(0-5)^2}[/tex]
[tex]|ZX|=\sqrt{(-1)^2+(-5)^2}[/tex]
[tex]|ZX|=\sqrt{1+25}[/tex]
[tex]|ZX|=\sqrt{26}[/tex]
Since
[tex]|XY|=\sqrt{26}=|ZX|[/tex]
The triangle is isosceles.
Slope of XZ
[tex]\frac{5-0}{-1--2}=\frac{5}{1} =5[/tex]
Slope of XY
[tex]=\frac{4-5}{4--1}=-\frac{1}{5}[/tex]
Since
[tex]\frac{-1}{5}\times 5=-1[/tex]
The triangle is a right angle triangle.