Respuesta :

Answer:

[tex](2x -7)(7x + 5)[/tex]

Step-by-step explanation:

We have a trinomial of the form [tex]ax ^ 2 + bx + c[/tex]

Use the formula [tex]-b + \frac{\sqrt{b^2 -4ac}}{2a}\\\\-b - \frac{\sqrt{b^2 -4ac}}{2a}[/tex]

Where a, b, c are constants belonging to real numbers.

So in the equation [tex]14x^2 - 39x - 35[/tex] we have

[tex]\frac{39 + \sqrt{(-39)^2 -4(14)(-35)}}{2(14)} \\\\\frac{39 - \sqrt{(-39)^2 -4(14)(-35)}}{2(14)}[/tex]

Then the solutions are:

[tex]x_1 = \frac{7}{2} --> 2x = 7 -->(2x-7) = 0\\\\x_2 =\frac{-5}{7} --> 7x = -5 -->(7x+5) = 0[/tex]

Then the polynomial is factorized in the following way:

[tex](2x -7)(7x + 5)[/tex]